UNIT-I
PART-B

Evolution of Software Economics:
Software  Economics, Pragmatic
Software Cost Estimation.



Software Economics

* Economics means System of inter relationship of
money, industry and employment.

* The cost of the software can be estimated by
considering the following things as parameters to
a function.

1.Size

2. Process

3. Personnel

4. Environment

5. Required Quality



Software Economics

* The Size of the end product Which is measured in
terms of the number of Source Lines Of Code or the
number of function points required to develop the
required functionality.

* The Process Used to produce the end product, in
particular the ability of the process is to avoid non-
value-adding activities (rework, bureaucratic delays,
communications overhead).

 The capabilities of software engineering Personnel,
and particularly their experience with the computer
science issues and the application domain issues of
the project.



Software Economics

 The Environment which is made up of the tools and
techniques available to support efficient software
development and to automate the process.

* The required Quality of the product includes its
features, performance, reliability, and flexibility.

 The relationship among these parameters and the
estimated cost can be calculated by using,

Effort = (Personnel) (Environment) (Quality) (SizeP 11‘:":&55)



Software Economics

Several parametric models have been developed to
estimate software costs; all of them can be generally
abstracted into this form.

One important aspect of software economics (as
represented within today's software cost models) is
that the relationship between effort and size exhibits a
diseconomy of scale.

The diseconomy of scale of software development is a
result of the process exponent being greater than 1.0.

Contrary to most manufacturing processes, the more
software you build, the more expensive it is per unit
item.



Software Economics

* The below figure shows three generations of
basic technology advancement in tools,
components, and processes.

* The required levels of quality and personnel
are assumed to be constant.

* The ordinate of the graph refers to software
unit costs (pick your favorite: per SLOC, per

function point, per component) realized by an
organization.



Target objective: improved RO

A

Cost

Software
ROI

Software Size

- 1960s-1970s

- Waterfall model

- Functional design

- Diseconomy of scale

- 1980s—-1990s

- Process impovement
- Encapsulation-based
- Diseconomy of scale

- 2000 and on

- iterative development
- Component-based

- Return on investment

Corresponding environment, size, and process technologies

Conventional

Transition

Modern Practices

Environments/tools:

Custom

Environment/tools:

Off-the-shelf, separate

Environment/tools:

Off-the-shelf, integrated

Size:

100% custom

Size:
30% component-based
70% custom

Size:
70% component-based
30% custom

Process: Process: Process:
Ad hoc Repeatable Managed/measured
Typical project performarice
Predictably bad : Unpredictable Predictable
Always; Infrequently: Usually:
Over budget On budget On budget
Over schedule

On schedule

On schedule




Software Economics

* The abscissa represents the life cycle of the
software business engaged in by the organization.

* The three generations of software development
are defined as follows:

1. Conventional: 1960s and 1970s, craftsmanship.

— Organizations used custom tools, custom processes,
and virtually all custom components built in primitive
languages.

— Project performance was highly predictable in that

cost, schedule, and quality objectives were almost
always underachieved.



Software Economics

2. Transition: 1980s and 1990s, software
engineering.

— Organizations used more-repeatable processes
and off-the-shelf tools, and mostly (>70%) custom
components built in higher level languages.

— Some of the components (<30%) were available as
commercial products, including the operating
system, database management system,
networking, and graphical user interface.



Software Economics

3. Modern practices: 2000 and later, software
production.

This book's philosophy is rooted in the use of
managed and measured processes, integrated
automation environments, and mostly (70%) off-the-
shelf components. Perhaps as few as 30% of the
components need to be custom built.

With advances in software technology and
integrated production  environments, these
component-based systems can be produced very
rapidly.



Software Economics

 Technologies for environment automation,
size reduction, and process improvement are
not independent of one another.

* In each new era, the key is complementary
growth in all technologies.

* For example, the process advances could not
be used successfully without new component
technologies and increased tool automation.



Software Economics

* The transition to modern practices and the
promise of improved software economics are by
no means guaranteed.

* We must be realistic in comparing the promises
of a well-executed, next-generation process using
modern technologies against the ugly realities of
history.

e It is a sure bet that many organizations
attempting to carry out modern projects with
modern techniques and technologies will end up
with the same old snafu.



Software Economics

* Organizations are achieving better economies
of scale in successive technology eras-with
very large projects (systems of systems), long-
lived products, and lines of business
comprising multiple similar projects.

* Below figure provides an overview of how a
return on investment (ROIl) profile can be
achieved in subsequent efforts across life
cycles of various domains.



Achieving ROI across a line of business

Investment in common architecture,
process, and environment for all
line-of-business systems

Cost per unit

Line-of-Business Life Cycle: Successive Systems

Achieving ROI across a project with multiple iterations

Investment in robust architecture, mature
iterative process, and process automation

Cost per unit

Project Life Cycle: Successive Iterations

Achieving ROI across a life cycle of product releases

investment in product architecture,
life-cycle release process, and process
automation

Cost per unit

Product Life Cycle: Successive Releases



Pragmatic Software Cost Estimation

One critical problem in software cost estimation is a lack of well-
documented case studies of projects that used an iterative
development approach.

Although cost model vendors claim that their tools are suitable for
estimating iterative development projects, few are based on
empirical project databases with modern iterative development
success stories.

Software industry has inconsistently defined metrics or atomic units
of measure, the data from actual projects are highly suspect in
terms of consistency and comparability.

It is hard enough to collect a homogeneous set of project data
within one organization; it is extremely difficult to homogenize data
across different organizations with different processes, languages,
domains, and so on.



Pragmatic Software Cost Estimation

 The exact definition of a function point or a SLOC is not
very important, just as the exact length of a foot or a
meter is equally arbitrary.

* There have been many debates among developers and
vendors of software cost estimation models and tools.

* Three topics of these debates are of particular interest
here:

1. Which cost estimation model to use?

2. Whether to measure software size in source lines of
code or function points.

3. What constitutes a good estimate?



Pragmatic Software Cost Estimation

1. Which cost estimation model to use?

— About 50 vendors of software cost estimation tools, data,
and services compete within the software industry.

— There are several popular cost estimation models (such as
COCOMO, CHECKPOINT, ESTIMACS, Knowledge Plan, Price-

S, ProQMS, SEER, SLIM, SOFTCOST, and SPQR/20), as well
as numerous organization-specific models.

— Among those Ada COCOMO and COCOMO Il are the basis
of many software economics arguments and perspectives.

— COCOMO is also one of the most open and well-
documented cost estimation models.



Pragmatic Software Cost Estimation

2. Whether to measure software size in source
lines of code or function points.

— The measurement of software size has been the
subject of much rhetoric.

— There are basically two objective points of view:
source lines of code and function points.



Pragmatic Software Cost Estimation

* SLOC

— Most software experts argued that the SLOC is a poor
measure of size. But it has some value in the software
Industry.

— SLOC worked well in applications that were custom
built why because of easy to automate and
instrument.

— Now a days there are so many automatic source code
generators are available and there are so many
advanced higher-level languages are available. So
SLOC is a uncertain measure.



Pragmatic Software Cost Estimation

* Function points

— The primary advantage of using function points is
that this method is independent of technology
and is therefore a much better primitive unit for
comparisons among projects and organizations.

— The main disadvantage is that the primitive
definitions are abstract and measurements are
not easily derived directly from the evolving
artifacts.



Pragmatic Software Cost Estimation

Although both measures of size have their drawbacks,
an organization can make either one work.

The use of some measure is better than none at all.

Anyone doing cross-project or cross-organization
comparisons should be using function points as the
measure of size.

Function points are also probably a more accurate
estimator in the early phases of a project life cycle.

In later phases SLOC becomes a more useful and
precise measurement basis of various metrics
perspectives.



Pragmatic Software Cost Estimation

The general accuracy of conventional cost models (such as
COCOMO) has been described as “within 20% of actuals,
70% of the time”.

Most real-world use of cost models is bottom-up
(substantiating a target cost) rather than top-down
(estimating the “should” cost).

Below figure illustrates the pre-dominant practice: The
software project manager defines the target cost of the
software, then manipulates the parameters and sizing until
the target cost can be justified.

The rationale for the target cost may be to win a proposal,
to solicit customer funding, to attain internal corporate
funding, or to achieve some other goal.



Pragmatic Software Cost Estimation

Software manager,
software architecture
manager, software
development manager,
software assessment
manager

“This project must cost
$X to win this business”

Cost modelers

“Here’s how
justify that cost”

Risks, options,
trade-offs,
alternatives

S~

Cost estimate

Fig: The predominant cost estimation process



Pragmatic Software Cost Estimation

The process described in above figure is not all bad.

It is absolutely necessary to analyze the cost risks and
understand the sensitivities and trade-offs objectively.

It forces the software project manager to examine the
risks associated with achieving the target costs and to
discuss this information with other stakeholders.

The result is usually various perturbations in the plans,
designs, process, or scope being proposed.

This process provides a good vehicle for a basis of
estimate and an overall cost analysis.



Pragmatic Software Cost Estimation

3. What constitutes a good software cost estimate?
* Insummary, a good estimate has the following attributes:

It is conceived and supported by the project manager,
architecture team, development team, and test team
accountable for performing the work.

It is accepted by all stakeholders as ambitious but realizable.

It is based on a well-defined software cost model with a credible
basis.

It is based on a database of relevant project experience that
includes similar processes, similar technologies, similar
environments, similar quality requirements, and similar people.

It is defined in enough detail so that its key risk areas are
understood and the probability of success is objectively
assessed.



	UNIT-I PART-B
	Software Economics
	Software Economics
	Software Economics
	Software Economics
	Software Economics
	Slide 7 
	Software Economics
	Software Economics
	Software Economics
	Software Economics
	Software Economics
	Software Economics
	Slide 14 
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation
	Pragmatic Software Cost Estimation



